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The Prediction of the Viscosity of Dense 
Gas Mixtures 

V. Vesovic 2 and W. A. Wa ke ha m 2 

An extension of an earlier procedure for the evaluation of the viscosity of very 
dense gas mixtures is proposed. The scheme is based upon the rigid-sphere 
theory of dense fluids, which is modified to take into account the behavior of 
real gases in a self-consistent manner. In particular, it is shown that a 
pseudoradial distribution function for each pure gas constructed from pure com- 
ponent viscosity data is a smooth function of density and is well behaved in 
limits of both high and low density. The method proposed removes the restric- 
tions on the range of applicability of earlier methods. Comparisons with the 
limited amount of experimental information available indicate that the 
procedure allows evaluation of the viscosity of gas mixtures to within a few 
percent. 
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1. I N T R O D U C T I O N  

The  ab initio pred ic t ion  of  the  viscosi ty of  a dense  gas mix ture ,  or  for tha t  

mat te r ,  of  a dense  pu re  gas, r e ma i n s  a n  u n s o l v e d  p rob lem.  However ,  the 
i ndus t r i a l  r e q u i r e m e n t  is, f requent ly ,  for the  e v a l u a t i o n  of the viscosi ty  of  a 
dense  gas m ix tu r e  for which  the  pure -gas  p roper t i es  are avai lable .  In  such a 

case the  d e m a n d s  p laced  u p o n  the  theory  are  less, so tha t  a r a the r  s imple  
theore t ica l  m o d e l  m a y  be employed .  

The  best  of  these mode l s  [ 1 ] is based  o n  us ing  expans ions  deve loped  
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for gases consisting of rigid spheres to predict the properties of a mixture 
by interpolating between the property values for its pure components. 
Unfortunately, the earlier implementations [ 1 ] of this method had several 
limitations which made the scheme inapplicable under certain important 
conditions. First, the earlier method used thermodynamic data to obtain an 
effective size parameter of a molecule. In some cases, this estimate of the 
size is inconsistent with the transport property data, and as a consequence, 
the method often fails at high densities. In this paper, following a 
suggestion of Sandler and Fiszdon [2], choice of the effective size 
parameter consistent with the transport property data is employed. 

Second, the original implementation of the procedure [ 1 ] made use of 
an ad hoc hypothesis to eliminate unphysical behavior of one of the 
functions characterizing the system. Here, we proposed a procedure which 
retains the correct physical behavior without the need for the arbitrary 
choices of the earlier method. 

Third, the original procedure [ 1] employed a rule for the combination 
of the pure-gas radial distribution functions which has subsequently been 
found to be thermodynamically inconsistent with the equation of state for a 
multicomponent gas mixture. A new rule, based on the Percus-Yevick 
integral equation [-3] for the pair distribution function of rigid-sphere 
molecules, has been derived by Kestin and Wakeham [4]. They employed 
it for the prediction of the thermal conductivity of gas mixtures at 
moderate densities and it is applied here in the prediction scheme for the 
viscosity of dense gas mixtures. 

2. THEORY 

According to the method of Di Pippo et al. [1] the viscosity of a 
dense gas mixture containing N components can be written in the form 

t / ( p ,  T ) =  - -  ON1 "'" HNN YN �9 -I- K m i  x ( 1 )  

Y1 "'" YN 0 NI HNN.._I 

Y,=xi 1 +  .= (m,+mj) XjCtij~ijp (2) 

nii X2i~ii ~ Xi.~j~ij mira: I2_~ 4ms 1 
~ ( m i + m y )  2 mi J + (3) 

j = 1 2rhsA o 
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H e ( y r  m,mj [ 2 0 _ 4 A ,  ] (4) 
~ ' ~  (mi + my)' L 3 2r/~jAu 

( 1 6 )  15p2  N N  
= x~xjzo.%.rl~j (5) / m,x Z S - 2 0  

j = l  i : 1  

where p is the molar density, x~ and xj are mole fractions of species i and j, 
and m i and m i their molecular masses. A* is a weak functional of inter- 
molecular potential for i-j interactions and is readily available using the 
corresponding-states principle [-5]. The symbol r/~ represents the viscosity 
of pure component i in the dilute-gas limit, while ~/o. represents the interac- 
tion viscosity for species i-j, defined only in the same limit. The parameter 
cqj accounts for the mean free path shortening for an i-j collision in a dense 
gas, whereas Zij is the pseudoradial distribution function for the molecules i 
and j in the presence of all other species in the mixture.3 

In order to implement the procedure described above for the 
evaluation of the mixture viscosity values of ~e for pure gas, the 
pseudoradial distribution for the various pure gases are required. These 
may be obtain from the pure-component viscosity by application of the 
rigid-sphere expression for the viscosity of a pure gas [-1, 4] in the form 

t l Xi(P, T) : # [ ' ~ i -  P~176 .~_ # 2 2 0 
2 _2 .2. 0 -- p L\ 2p c%rl i  flp2~] (6) 

1 ,  
fl=4+ ~ T6 (7) 

where qi is the pure-component viscosity at the molar density p and 
temperature T at which the properties of the mixture are required. 

However, there are three factors that complicate the evaluation of 
Zi(P, T) using Eq. (6). First, we are required to select values of eii before 
solving for ;~i, and even when they are selected, Eq. (6) can develop values 
of ~i that are complex in certain circumstances. Given that this behavior is 
physically unrealistic, we must adopt a method which suffers from neither 
of these disadvantages. 

The best method of this kind is that suggested by Sandler and Fiszdon 
[2]. We note that Eq. (6) has two possible solutions: ~+ for the positive 
sign, and Z7 for the negative sign. The first of these solutions, Zi-+, has the 
property that as p ~ 0, ~'+--* ~ ,  which is physically unrealistic, whereas 
ZF ~ 1 as p ~ 0. The second of these solutions, ZT, has the property that 

3 A typographical error in the corresponding equations of Ref. 1 is corrected here. 
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d2F/dp < 0  for large p, which is equally unrealistic, whereas 2 + has a 
positive gradient for large p. Thus, it is proposed that the most appropriate 
2, is obtained by using ;7/- at low densities and ;7+ at high densities, 
switching between the two at some, as yet unspecified, density p*. 

In order to make the switch smoothly it is essential that at the 
crossover density p* 

,7+(p*, t ) =  L(p*,  T) 

These equalities lead to the results that 

rlO~,p , = + 1 = 3.1954 

(8) 

(9) 

Now the group (rljrl~ as a function of density displays its minimum 
value at the density p*, where the minimum value is 

Thus, from experimental, or correlated, values of t/,(p, T) it is possible, by 
plotting (tlJtl~ as a function of p for each temperature, to locate the 
density of the minimum, p*(T) and to determine the value of the 
corresponding group at the minimum. Subsequently, application of 
Eq. (10) yields a value of c~,. In this way we ensure that values of )~e will be 
entirely real and that the transition between the two roots is accomplished 
smoothly. 

In practice, the procedure is implemented by establishing the density 
for which ( drl~'~ = r/--!' (11) 

a'pJT p 

Figure 1 shows the pseudoradial distribution function for N2 deduced 
according to the procedure described above for which the changeover den- 
sity is at p = 13300 mol -m -3. The resulting 2~ is smooth and physically 
reasonable. 

In order to proceed further, one needs to construct the pseudoradial 
distribution function 20 for species i and j in the mixture. This is achieved 
by implementing the mixing rule first developed in Ref. 4, 

,7ij(p, T ) = I + ~  ~ x~(,Tk-1)-t k=l 
t< : ~ ( , 7 , -  1 )~/~ + ( , T s -  1 )~/~ 

(12) 
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with the following mixing rule for e's as defined in earlier work [1 ], 

_1 [rv 1/3 1/3 3 c~/j = 8~i  + ~/j ) (13) 

It would seem at first sight that the scheme proposed for the calculation of 
viscosity of dense gas mixtures would suffer from the same inadequacies as 
those of the rigid-sphere model on which it is based. However, that the 
pseudoradial distribution functions )(i(P, T) at each p and T are evaluated 
[Eq. (6)] using the experimentally available information rather than the 
results of the rigid-sphere model implies that )~i is effectively an adjustable 
function, whose qualitative behavior is that of the rigid-sphere model but 
whose value has been adjusted according to the pure component property 
values. It is in this sense that the proposed scheme represents an inter- 
polation of the properties of the pure components. 

3. APPLICATIONS 

The scarcity of reliable high-pressure measurements of mixture 
viscosities makes the proposed scheme at the same time useful and difficult 
to test. Furthermore, the similarity of the present scheme with that 
proposed earlier [1 ] makes the repetition of tests at low to moderate den- 
sities inappropriate here in the interests of space. Consequently, we prefer 
to perform comparisons for just two systems which permit a test of the new 
features of the present scheme associated with the change from one branch 
of the pseudoradial distribution function to another. 
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3.1. Viscosity of Air 

Direct measurements of the viscosity of air have been correlated by 
Kadaya ctal .  [6] and this correlation serves as a suitable data base for 
comparison. We have therefore calculated the viscosity of air for the 
properties of its constituents as a function of density over a range of tem- 
perature using the scheme described above. For this purpose, air has been 
treated as a three-component mixture of N2, 02, and Ar (XN2=0.7841, 
XO2 = 0.2066, XAr = 0.0093) and the pure-component viscosities have been 
obtained using the best available correlations N 2 [7, 8], 02 [7-9], and Ar 
[10]. The interaction properties r/~ A*, have been obtained using the 
corresponding-states principle [5]. 

The results are presented in Fig. 2 for two isotherms and the 
agreement between calculated and "experimental" data is remarkable since 
the only empirical information employed is that on low-density binary 
mixtures and the pure-component viscosities at high density. The 
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maximum deviations at high density amount to + 1.7 %, which is within 
the experimental uncertainty of the correlation [6]. Furthermore, the 
crossover density P~2 (T= 200 K) is about 13300 mol -m 3, which is well 
below some of the densities at which the comparison has been made, so 
that the proposed scheme is admirably confirmed. 

3.2. Carbon Dioxide-Methane System 

The viscosity of carbon dioxide-methane mixtures has been measured 
by De Witt and Thodos r 11 ] in a capillary viscometer and it is believed to 
be accurate to +2%. The highest densities correspond to pressures of 
about 70MPa. The calculations were performed at 323 K for three 
different compositions. The properties of pure CO2 and CH4 have been 
obtained using correlations of ref. 12 and 13, respectively. The crossover 
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Fig. 3. The viscosity of CO2-CH 4 mixtures at 323 K .  
( - - )  Calculation; ( + )  experimental for Xco2=0.757; 
( �9 ) experimental for Xco2 = 0.536; (*) experimental for 
Xco 2 = 0.245. 
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density is about  11000 m o l - m  -3 for CO2 and 13500 t o o l - m  -3 for CH4,  
again well below the values encompassed by the calculation. 

The results are shown in Fig. 3 in the form of a plot of the viscosity as 
a function of density. Al though the agreement is not  quite as good  as for 
air, the max imum deviation does not  exceed + 5 %  even though the 
viscosity changes by almost one order of magni tude within the range 
considered. 

4. C O N C L U S I O N S  

A new self-consistent scheme has been developed for the prediction of  
the viscosity of  dense gas mixtures. It is based on a rigid-sphere theory and 
on the observat ion that  it is possible to construct  a smooth  and physically 
plausible pseudoradial  distribution function for real gases by choosing an 
appropriate  solution of the rigid-sphere equations according to well-defined 
criteria. This modification allows the scheme to be used at very high 
densities, which has not  hitherto been possible. 

The scheme has been tested against the limited amoun t  of experimen- 
tal data  available and shown to be capable of reproducing the viscosities of 
two dense gas mixtures to within a few percent. The application of the 
same procedure to a wider range of gas mixtures to prove its more  general 
applicability must  await more  experimental information. 
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